An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders

نویسندگان

  • Jacob Walker
  • Carl Doersch
  • Abhinav Gupta
  • Martial Hebert
چکیده

In a given scene, humans can often easily predict a set of immediate future events that might happen. However, generalized pixellevel anticipation in computer vision systems is difficult because machine learning struggles with the ambiguity inherent in predicting the future. In this paper, we focus on predicting the dense trajectory of pixels in a scene — what will move in the scene, where it will travel, and how it will deform over the course of one second. We propose a conditional variational autoencoder as a solution to this problem. In this framework, direct inference from the image shapes the distribution of possible trajectories, while latent variables encode any necessary information that is not available in the image. We show that our method is able to successfully predict events in a wide variety of scenes and can produce multiple different predictions when the future is ambiguous. Our algorithm is trained on thousands of diverse, realistic videos and requires absolutely no human labeling. In addition to non-semantic action prediction, we find that our method learns a representation that is applicable to semantic vision tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutorial on Variational Autoencoders

In just three years, Variational Autoencoders (VAEs) have emerged as one of the most popular approaches to unsupervised learning of complicated distributions. VAEs are appealing because they are built on top of standard function approximators (neural networks), and can be trained with stochastic gradient descent. VAEs have already shown promise in generating many kinds of complicated data, incl...

متن کامل

Transfer learning from synthetic to real images using variational autoencoders for robotic applications

Robotic learning in simulation environments provides a faster, more scalable, and safer training methodology than learning directly with physical robots. Also, synthesizing images in a simulation environment for collecting large-scale image data is easy, whereas capturing camera images in the real world is time consuming and expensive. However, learning from only synthetic images may not achiev...

متن کامل

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

Challenges with Variational Autoencoders for Text

We study variational autoencoders for text data to build a generative model that can be used to conditionally generate text. We introduce a mutual information criterion to encourage the model to put semantic information into the latent representation, and compare its efficacy with other tricks explored in literature such as KL divergence cost annealing and word dropout. We compare the log-likel...

متن کامل

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016